Home | Contact ST  
Follow ST

Environmental Monitoring

2018:  MARCH

March 2018 Issue

Verifavia Now Offers CSI Verification

Verifavia has expanded its offering to include global verification services for the Clean Shipping Index (CSI).

Formally established in 2011, CSI is an independent rating system of the environmental performance of ships and shipping companies. CSI seeks to deliver market incentives for clean shipping, with a view to encouraging shipping practices that are sustainable and environmentally responsible.

The CSI verification service is an extension of Verifavia’s portfolio of services for the shipping sector, which includes EU MRV (monitoring, reporting and verification), IMO DCS (data collection system), and CCWG (Clean Cargo Working Group) verification.

Shipowners whose ships obtain full CSI verification can benefit from lower port fees at participating ports, including the Port of Vancouver and the Port of Prince Rupert. In January 2018, the Swedish Maritime Administration introduced differentiated fairway tax fees for vessels that are more environmentally friendly than their counterparts, solely based on the CSI rating. Vessels with a verified performance of three or more CSI stars will benefit from reduced fairway dues.

Alaska Data Portal Gets Update

The Alaska Ocean Observing System (AOOS) has updated Ocean Data Explorer, http://portal.aoos.org/alaska-statewide, a data portal connecting the world to diverse data sets from across Alaska, including the Arctic, Bering Sea and Gulf of Alaska—the state’s three largest marine ecosystems.

Packaged in an interactive interface, Ocean Data Explorer organizes and presents data for applications ranging from tracking bird migration to identifying potential assets for future research. The Real-Time Sensor Map provides eyes on live conditions in scientifically and economically critical parts of the state.Updates include: data comparison and charting functions; featured data views; advanced charting features, including climatologies and anomalies; station and source level metadata pages; and shareable custom data views.

The updated Ocean Data Explorer is currently in beta testing. Users can submit feedback on the site to help improve the portal features and tools.

Radium-228 Increase Shows Fast Arctic Change

Scientists have found surprising evidence of rapid climate change in the Arctic: In the middle of the Arctic Ocean near the North Pole, they discovered that the levels of radium-228 have almost doubled over the last decade. This indicates that large-scale changes are happening along the coast—because the source of the radium is the land and shallow continental shelves surrounding the ocean. These coastal changes could also be delivering more nutrients, carbon and other chemicals into the Arctic Ocean and lead to dramatic impacts on Arctic food webs and animal populations.

The research team, led by Woods Hole Oceanographic Institution, suspects that melting sea ice has left more open water near the coast for winds to create waves. The wave action reaches down to the shallow shelves and stirs up sediments, releasing radium that is carried to the surface and into the open ocean. The same mechanism would likely also mobilize and deliver more nutrients, carbon and other chemicals into the Arctic Ocean, fueling the growth of plankton at the bottom of the food chain, which could affect fish and marine mammals and change the Arctic ecosystem.

Antarctic Survey With Teledyne Sonars

The Teledyne SeaBat T50 and T20 multibeam echosounders are the key component to the Yun Zhou Tech M80B unmanned surface vessel. Yun Zhou Tech designs and manufacturers a range of USVs, and the M80B was designed for the installation and deployment of the T50 and T20 sonars.

The M80B, fully equipped with a SeaBat T50-P, was recently deployed in Antarctica from the Chinese polar RV Xue Long (“Snow Dragon”). The T50 surveyed 5 sq. km in the waters of Antarctica.

Water Quality Degrades In Caribbean

A team including Smithsonian marine biologists just released 25 years of data on the health of Caribbean coasts from the Caribbean Coastal Marine Productivity Program (CARICOMP). The data revealed that water quality decreased at 42 percent of the monitoring stations across the basin. However, significant increases in water temperature, expected in the case of global warming, were not detected across sites.

“We’re seeing important changes in local conditions, like decreases in visibility associated with declining water quality and the increasing presence of people, but we’re not picking up global-scale changes, like climate warming,” said Iliana Chollett, post-doctoral fellow at the Smithsonian Marine Conservation Program in Fort Pierce, Florida.

The team gathered CARICOMP data from 29 sites in Barbados, Belize, Bermuda, Bonaire, Colombia, Costa Rica, Florida, Jamaica, Mexico, Panama, Puerto Rico, Saba and Venezuela and organized it into a single data set. Despite attempts to locate monitoring sites in places not affected by human activities, the stations are picking up signals of human influence throughout the Caribbean basin.

“One positive implication of this report is people are capable of dealing with local change by regulating pollution and runoff,” said Rachel Collin, director of the Bocas del Toro Research Station at the Smithsonian Tropical Research Institute. “If people get their act together very soon, there is still hope of reversing some of these changes.”

2018:  MARCH

-back to top-

Sea Technology is read worldwide in more than 115 countries by management, engineers, scientists and technical personnel working in industry, government and educational research institutions. Readers are involved with oceanographic research, fisheries management, offshore oil and gas exploration and production, undersea defense including antisubmarine warfare, ocean mining and commercial diving.